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A weakly nonlinear stability analysis of an axisymmetric Newtonian liquid jet is
presented. The calculation is based on a small-amplitude perturbation method and
performed to second order in the perturbation parameter. The obtained solution
includes terms derived from a polynomial approximation of a viscous contribution
containing products of Bessel functions with different arguments. The use of such
an approximation is not needed in the inviscid case and the planar case, since the
equations of those problems can be solved in an exact form. The developed model
depends on three dimensionless parameters: the initial perturbation amplitude, the
perturbation wavenumber and the liquid Ohnesorge number, the latter being the
dimensionless liquid viscosity. The influence of the approximate terms was shown
to be relatively small for a large range of Ohnesorge numbers so that they can be
ignored. This simplification provides a jet model as simple to use as the previous
ones, but taking into account the liquid viscosity and the cylindrical geometry. The
jet model is used to reveal the effect of both the wavenumber and the Ohnesorge
number on the formation of satellite drops, which is known as a nonlinear effect.
Results are found in good agreement with direct numerical simulations and forced
liquid jet experiments for wavenumbers lower than a threshold value. Satellite drop
formation is retarded with increasing Ohnesorge number and wavenumber, as expected
by the damping and size effects of viscosity. The threshold number corresponds to
the maximum wavenumber for which satellite drop formation is predicted before jet
breakup, and for which volume conservation is satisfied within a certain amount. The
volume conservation criterion is imposed to ensure that the conclusions inferred by
our model are safe.
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1. Introduction
The capillary instability of a liquid jet in an ambient medium has been of scientific

and industrial interest for more than a century. After the pioneering experiments of
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FIGURE 1. Liquid jet breakup leading to the formation of satellite drops. From top to
bottom: k= 0.075, k= 0.250, k= 0.683 where k is the wavenumber non-dimensionalised
by the jet radius (Rutland & Jameson (1971), reproduced with permission).

Savart (1833) and Plateau (1873), Rayleigh (1878) was the first to study theoretically
the linear capillary instability of an inviscid liquid jet in a vacuum. In a further
investigation, Rayleigh (1892) considered the effect of liquid viscosity. The viscous
dispersion relation was derived for any possible viscosity and the solution for the
paramount viscosity was determined. Rayleigh’s analysis was then generalised by
Weber (1931) and Chandrasekhar (1961) to represent all intermediate viscous cases.

Liquid jet experiments showed that linear stability analyses are appropriate to
predict the growth rate of the jet surface deformation (Goedde & Yuen 1970; Rutland
& Jameson 1971; Blaisot & Adeline 2000; Gonzales & Garcia 2009; Charpentier et al.
2017) and the size of the main drops (Rutland & Jameson 1970; Charpentier et al.
2017). However, these analyses fail to predict the formation of satellite drops, i.e. the
small drops observed in the experiments as illustrated in figure 1. This phenomenon
has been very early interpreted as a nonlinear effect (Rutland & Jameson 1970).

Satellite drop formation in water jet breakup was studied experimentally, among
others, by Vassallo & Ashgriz (1991) for different values of imposed disturbance
wavenumbers. It was observed that, for the k domain 0.57 < k < 1, with k the
wavenumber non-dimensionalised by the jet radius, no satellite drops may be formed.
This observation is in contrast to the experimental results of Rutland & Jameson
(1970) (as illustrated in figure 1 for k = 0.683) and Lafrance (1975) who observed
satellite drops up to k ≈ 0.73. Experimental results on satellite drop formation are
known to be sparse.

A theoretical prediction of satellite drop formation in liquid jet breakup requires a
nonlinear stability analysis. Since the development of spatial instability is of minor
importance for jet-radius-based Weber numbers of approximately 80 and higher
(Keller, Rubinow & Tu 1973), which are easily reached in many applications, we
restrict our discussion to temporal instability. A recent weakly nonlinear analysis
and numerical simulation of spatial jet instability is due to Xie, Yang & Ye (2017).
The nonlinear analysis reveals disturbance growth rates that depend on the initial
dimensionless amplitude, the dimensionless wavenumber of the disturbance and the
liquid jet Ohnesorge number. These are the three dimensionless parameters of the
temporal stability analysis discussed in the present work.
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The first weakly nonlinear temporal stability analysis of a liquid jet is due to
Yuen (1968). He treated the jet liquid as inviscid and the liquid velocity field as
irrotational. The flow field quantities were expanded in series of powers of a small
amplitude parameter, and the analysis was carried out to third order in the expansion
parameter, where a correction to the cutoff wavenumber between the unstable and
stable regimes comes in (Eggers 1997). Yuen applied the method of multiple time
scales to avoid secular terms in the third-order solution. For k = 0.3, Yuen (1968)
found secondary waves leading to the formation of satellite drops in the jet breakup.
For k = 0.7 and k = 0.95, secondary waves are not observed, indicating that satellite
drop formation predicted by the model depends on the deformation wavenumber. A
careful experimental validation of Yuen’s theory is due to Taub (1976). Nayfeh (1970)
presented an alternative formulation of a third-order perturbation expansion for the
instability of an incompressible, inviscid liquid jet. Using the method of multiple
time scales, Nayfeh arrives at a solution similar to Yuen, but with the influence of
the perturbation amplitude on the cutoff wavenumber correctly represented, since the
secular terms were completely avoided (Eggers 1997).

Lafrance (1975) presented Yuen’s theory again and used it for predicting satellite
drop sizes in capillary liquid jet breakup. The theory is found to well represent
water jet breakup at disturbance wavenumbers between 0.1 and 0.9 in that measured
sizes of main and satellite drops agree well with the theoretical predictions. The
same holds true for the growth rate of the jet surface deformation. Eggers (1997),
however, reports algebraic errors in Lafrance’s theory, which is complemented by our
finding that Lafrance (1975) used Yuen’s equations, which were partly mistyped in
his publication, for his calculations, while Yuen himself used the correct equations.
The good agreement of water jet experiments with Rayleigh’s dispersion relation
when measuring relative displacements of jet swells and necks is claimed by Goedde
& Yuen (1970) to be due to the cancellation of nonlinear terms.

Eggers (1997) points at differences between the results for the cutoff wavenumber
between the unstable and stable regimes by Yuen (1968), Nayfeh (1970) and Lafrance
(1975). Nonlinearity produces an asymmetric evolution of an initially sinusoidal wave
with generation of higher harmonics, as well as feedback into the fundamental wave
(Yuen 1968). The difference between the two dependencies of the cutoff on the
disturbance amplitude predicted by Yuen and Nayfeh are traced back to a secular
term overlooked by Yuen. The analysis by Lafrance (1975) predicted no dependency
of the cutoff on the disturbance amplitude at all. Chaudhary & Redekopp (1980)
showed that this was due to an error in the algebra of Lafrance’s analysis (Eggers
1997).

Eggers & Dupont (1994) analysed drop formation in a quasi-one-dimensional
approximation of the Navier–Stokes equations. The Taylor-series expansions of
the velocity components and pressure in the liquid allow for solutions close to the
singularity at jet breakup, which weakly nonlinear analyses do not offer. The resulting
equations for the expansion coefficients as functions of the axial coordinate are solved
numerically. Deformed jet states with drop formation computed, close to pinch off,
compare very well with experimental flow visualisation, both for water and glycerol,
with viscosities different by a factor of approximately 1000.

Papageorgiou (1995) developed similarity solutions for the instability of inviscid
and viscous liquid jets, accounting for drop pinch off and the jet dynamics beyond
the instant of drop formation. Among the viscous jets, distinction is made between
the Stokes and the Navier–Stokes cases, according to very small or large values
of a non-dimensional number termed the Reynolds number, which is the inverse
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of the Ohnesorge number squared. The jets are treated as slender, i.e. their radial
extension is much smaller than the axial one. The similarity solutions are not based
on an arbitrary axial length scale, in contrast to the one-dimensional equations used
by earlier investigators. This work by Papageorgiou (1995) generalizes the work by
Keller & Miksis (1983) and Ting & Keller (1990), who investigated inviscid jets
and sheets only. Results of Papageorgiou’s work rather consist of the evolution of
the jet surface shape with time rather than, e.g. drop sizes. The inclusion of the jet
behaviour around the pinching singularity makes this work and the work by Eggers
& Dupont (1994) very attractive for the description of the drop formation process.

Mansour & Lundgren (1990) simulated numerically the capillary breakup of a liquid
jet at varying wavelength of the initial jet deformation. The computations based on
a boundary integral method treat cases with very small jet Ohnesorge numbers,
i.e. nearly inviscid liquid jets. Dynamic interaction between the jet and the ambient
medium is not accounted for. The formation of large drops separated by smaller drops
is obtained. The initial disturbance growth rate is found to agree with Rayleigh’s linear
theory. Satellite drops form at all unstable disturbance wavelengths, in contrast to
the finding of the weakly nonlinear analysis by Yuen (1968). Comparison with the
experiment shows that the simulation slightly underestimates main drop sizes and
overestimates satellite drop sizes.

A study of temporal capillary jet instability based on numerical solutions is due to
Ashgriz & Mashayek (1995). The Navier–Stokes equations for the jet with free surface
and surface tension are solved, using a Galerkin finite-element method and applying
an interface capturing scheme. The jet surface is initially deformed sinusoidally and
then tracked with ongoing time. The breakup is found to occur in the middle between
two swells on the jet only for very low Reynolds numbers, which are in fact inverse
Ohnesorge numbers. For larger Reynolds numbers, breakup rather occurs close to the
swells, leaving a section of the jet which forms satellite drops. Satellite drop formation
is found to occur for all the dimensionless disturbance wavenumbers between 0.2
and 0.9, and the satellite size decreases with increasing wavenumber. Growth rate
measurements are compared to results from linear viscous theory, showing that the
theory predicts the numerical results better for higher Ohnesorge numbers. The
linear theory rather overestimates the measured growth rate at lower wavenumbers,
and underestimates it at higher wavenumbers. The largest deviation at a Ohnesorge
number of 5 × 10−3 is approximately 10 %. The deviation from linear theory is
reduced when the growth rate measurement is performed with a two-mode fitting,
taking into account the two capillary modes, as shown in figure 12 of Gonzales &
Garcia (2009) for three wavenumbers k= 0.2, k= 0.7 and k= 0.9. The study of the
influence of wavenumber on growth rate measurements was completed in a recent
multi-scale analysis of simulated low Ohnesorge liquid jets by Dumouchel et al.
(2017), for which the agreement between linear theory and growth rate measurements
performed with a single-mode fitting was found to be excellent, independently of the
wavenumber (see figure 10 of that paper).

In the present work we conduct a weakly nonlinear temporal stability analysis of
a viscous jet, which is missing in the literature, to gain insight into the role of the
liquid viscosity on the formation of satellite drops. This model is a counterpart of
the ones developed by Yuen (1968) for inviscid liquid jets and by Yang et al. (2013)
for viscous liquid sheets. Since satellite drop formation is initially due to the growth
of the first nonlinear contribution to the jet deformation (see Renoult, Rosenblatt
& Carles (2015) for more details on the effects of nonlinearity on a fluid interface
instability), the jet surface shape is expanded up to second order in the small initial
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amplitude deformation. The present work details and extends the short contribution
by Renoult, Brenn & Mutabazi (2017) to the ILASS Europe conference 2017.

In the following section we derive the equations of motion and their boundary
and initial conditions to second order in the initial deformation amplitude. Thereafter
we solve the equations derived in the sequence of the order. The solutions are then
presented and discussed by comparison to the inviscid solution and to previous
numerical and experimental studies. The paper ends with the conclusions.

2. The problem and the equations
The weakly nonlinear temporal analysis of the capillary instability of a liquid jet

is studied. The jet is assumed to be symmetric around the axial direction of the
cylindrical coordinate system. The liquid is treated as incompressible and Newtonian.
The dynamic influence from the ambient fluid is neglected and body forces are not
accounted for.

Initially, the jet is deformed from the circular cylindrical shape by a single-mode
perturbation of wavenumber k = 2π/λ (with λ the wavelength of the perturbation)
and amplitude η0 and is at rest, as sketched in figure 2. The amplitude parameter,
η0, is assumed to be small compared to the radius of the unperturbed jet, a. More
arbitrary initial conditions are discussed in the generalised normal-mode linear analysis
of Garcia & Gonzales (2008).

The purpose of the temporal analysis is to determine the time evolution of the small-
amplitude perturbation on the jet surface, velocity field and pressure field in the liquid
flow. To that end, the jet surface is described by rs(z, t)= a+ η(z, t), where η is the
deformation against the undisturbed cylindrical jet of radius a, the pressure field by
p(r, z, t) and the velocity field by the two components ur(r, z, t) and uz(r, z, t), taking
advantage of the axisymmetry for the problem studied here.

The fluid variables and equations are non-dimensionalised with the undeformed jet
radius a, the capillary time scale (ρa3/σ)1/2 and the capillary pressure σ/a for length,
time and pressure, respectively. Here, ρ is the liquid density and σ the surface tension.

The continuity equation and the two components of the momentum equation in the
radial (r) and axial (z) directions read

1
r
∂

∂r
(rur)+

∂uz

∂z
= 0, (2.1)

∂ur

∂t
+ ur

∂ur

∂r
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]
, (2.3)

where Oh = µ/(σaρ)1/2 is the Ohnesorge number, the characteristic dimensionless
parameter distinguishing the viscous from the inviscid case, with the liquid dynamic
viscosity µ. The above set of equations are solved subject to three boundary and two
initial conditions.

The first boundary condition states that the material rate of deformation of the jet
surface equals the radial velocity component at the place of the deformed surface. This
kinematic condition reads

ur =
Dη
Dt
=
∂η

∂t
+ uz

∂η

∂z
at r= 1+ η. (2.4)
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FIGURE 2. Sketch of the geometry of a capillary liquid jet under varicose deformation.

The second boundary condition states that the shear stress parallel to the jet surface
is zero, since the dynamic influence of the ambient fluid is neglected. This dynamic
condition reads

(n · τ )× n= 0 at r= 1+ η, (2.5)

where the surface unit normal vector n is given as

n=
∇F
|∇F|

with F(r, z, t)= r− 1− η(z, t) (2.6)

and the viscous extra stress tensor τ is the one for the incompressible Newtonian fluid
(see for instance appendix A in Brenn (2017)).

The last boundary condition is the normal-stress condition at the jet surface. It states
that the stress normal to the jet surface, composed of the flow-induced pressure and a
viscous contribution, differs across the interface by the contribution due to the surface
tension. This second dynamic condition reads

−p+Oh(n · τ ) · n+∇ · n= 0 at r= 1+ η. (2.7)

In this equation, the divergence of the unit normal vector is obtained as

∇ · n= (1+ η)−1

[
1+

(
∂η

∂z

)2
]−1/2

−
∂2η

∂z2

[
1+

(
∂η

∂z

)2
]−3/2

at r= 1+ η. (2.8)

The first initial condition is imposed by the initial sinusoidal surface disturbance.
Volume conservation leads to the following expression for the initial jet shape (Yuen
1968):

rs(z, 0)= 1+ η(z, 0)= η0 cos kz+ (1− η2
0/2)

1/2
= 1+ η0 cos kz− 1

4η
2
0 −

1
32η

4
0 − · · · .

(2.9)

The Taylor expansion of the initial jet shape is possible since η0� 1 by assumption.
The second initial condition states that the jet surface is initially at rest and thus

reads

∂η

∂t
(z, 0)= 0. (2.10)
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For expressing these equations in a weakly nonlinear form, the deformed surface
shape, as well as the two velocity components and the pressure, are expanded in power
series with respect to the small amplitude parameter η0:

rs(z, t)= 1+ η1(z, t)η0 + η2(z, t)η2
0 + · · · , (2.11)

p(r, z, t)= 1+ p1(r, z, t)η0 + p2(r, z, t)η2
0 + · · · , (2.12)

ur(r, z, t)= ur1(r, z, t)η0 + ur2(r, z, t)η2
0 + · · · , (2.13)

uz(r, z, t)= uz1(r, z, t)η0 + uz2(r, z, t)η2
0 + · · · . (2.14)

One important difference between the linear analysis and the weakly nonlinear one is
that the boundary conditions are satisfied on the deformed jet surface, not on the one
of the cylindrical jet. For doing this, but still allowing for the r-dependent quantities
(velocity components and pressure) in the boundary conditions to be evaluated on the
undeformed jet surface, their values on the deformed shape are represented by Taylor
expansions, such as

ur(r= 1+ η, z, t)= ur(r= 1, z, t)+
∂ur

∂r
(r= 1, z, t)η+ · · · , (2.15)

uz(r= 1+ η, z, t)= uz(r= 1, z, t)+
∂uz

∂r
(r= 1, z, t)η+ · · · , (2.16)

p(r= 1+ η, z, t)= p(r= 1, z, t)+
∂p
∂r
(r= 1, z, t)η+ · · · . (2.17)

Substituting these expressions into the equations of motion (2.1)–(2.3), the boundary
conditions (2.4), (2.5) and (2.7) and the initial conditions (2.9), (2.10) and representing
the flow quantities and their derivatives as given in (2.11) through (2.17), we obtain
sets of first- and second-order equations of motion with the boundary and initial
conditions consisting of all the terms with the deformation parameter η0 to the first
and second powers, respectively.

2.1. First-order equations
At first order in the parameter η0, the continuity and momentum equations read

1
r
∂

∂r
(rur1)+

∂uz1

∂z
= 0, (2.18)
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∂t
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∂r
+Oh
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∂
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(
1
r
∂

∂r
(rur1)

)
+
∂2ur1

∂z2

]
, (2.19)
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∂p1

∂z
+Oh

[
1
r
∂

∂r

(
r
∂uz1

∂r

)
+
∂2uz1

∂z2

]
. (2.20)

The boundary conditions read at r= 1

ur1 =
∂η1

∂t
, (2.21)

∂uz1

∂r
+
∂ur1

∂z
= 0, (2.22)

−p1 + 2Oh
∂ur1

∂r
−

(
η1 +

∂2η1

∂z2

)
= 0. (2.23)

The initial conditions are

η1(z, 0)= cos kz and
∂η1

∂t
(z, 0)= 0. (2.24a,b)
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2.2. Second-order equations
At second order in the parameter η0, the continuity and momentum equations read

1
r
∂

∂r
(rur2)+
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∂z
= 0, (2.25)
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, (2.26)
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∂z2
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∂uz1
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The boundary conditions read at r= 1
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∂η1

∂z
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∂r
, (2.28)
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+
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+
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)
− 2

(
∂ur1
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−
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)
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, (2.29)
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−
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∂2η2

∂z2

)
= η1

∂p1

∂r
− 2Oh
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η1
∂2ur1

∂r2
−
∂η1
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∂ur1
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1
2
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∂η1
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)2

− 2η2
1

]
. (2.30)

The initial conditions are

η2(z, 0)=−
1
4

and
∂η2

∂t
(z, 0)= 0. (2.31a,b)

Solving these sets of equations will reveal the weakly nonlinear role of the viscous
stresses in the liquid on the capillary instability of a Newtonian liquid jet in a vacuum.

3. General solutions of the governing equations
3.1. First-order solutions

The first-order equations describe the linear problem. Well-known solutions are
expected to be recovered, in particular the special form of the dispersion relation for
viscous jets first presented by Rayleigh (1892). Since only two-dimensional flow fields
are examined, we apply the method of the Stokesian streamfunction for determining
the first-order velocity and pressure fields. The streamfunction ψ(r, z, t) is defined by
its relations to the two velocity components ur1 and uz1 as (Bird, Stewart & Lightfoot
1960)

ur1 =−
1
r
∂ψ

∂z
, uz1 =

1
r
∂ψ

∂r
. (3.1a,b)

Using this definition of the velocity components as derivatives of the streamfunction,
the resulting first-order velocity field satisfies the continuity equation identically.

The first-order interface deformation is assumed to remain sinusoidal. The solution
is thus sought in the form

η1 = η̂1eikz−α1t (3.2)

with η̂1 the first-order initial surface amplitude and α1 the first-order growth rate of
the jet problem.
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Taking the curl of the momentum equation in a vector form based on (2.19) and
(2.20), we obtain the equation(

1
Oh

∂

∂t
− E2

c

)
(E2

cψ)= 0 (3.3)

for the streamfunction, where the operator E2
c is given as

E2
c = r

∂

∂r

(
1
r
∂

∂r

)
+
∂2

∂z2
. (3.4)

The solution of (3.3) reads (Brenn 2017)

ψ(r, z, t)= [C1rI1(kr)+C2rK1(kr)+C3rI1(lr)+C4rK1(lr)]eikz−α1t, (3.5)

where l2
= k2
− α1/Oh defines a modified wavenumber. In the solution (3.5), which

describes the jet motion due to the disturbance, the modified Bessel functions of the
second kind K1 must be discarded by setting C2 = C4 = 0, since they diverge on the
jet axis. Thus, the resulting form of the streamfunction is

ψ(r, z, t)= [C1rI1(kr)+C3rI1(lr)]eikz−α1t
=ψ1(r, z, t)+ψ2(r, z, t). (3.6)

The two remaining constants, C1 and C3, are determined by the kinematic and the
first dynamic boundary conditions, equations (2.21) and (2.22), and read

C1 =−
iα1η̂1

kI1(k)
l2
+ k2

l2 − k2
=

iη̂1

kI1(k)
(2k2Oh− α1), C3 =

i2α1η̂1

I1(l)
k

l2 − k2
=−

i2η̂1Oh k
I1(l)

.

(3.7a,b)

With these constants, the streamfunction of the disturbance is known, but the growth
rate α1 remains to be determined.

From the streamfunction we may calculate the velocity field in the jet due to the
disturbance as

ur1 =−ik[C1I1(kr)+C3I1(lr)]eikz−α1t, (3.8)
uz1 = [C1kI0(kr)+C3lI0(lr)]eikz−α1t. (3.9)

The pressure due to the disturbance in the liquid field is obtained by integrating one
component of the momentum equation. For this, the z component is the right choice
since it offers an easy integration with respect to the z coordinate. The result is

p1 =−iα1C1I0(kr)eikz−α1t
+ f (r, t). (3.10)

The function f is identically equal to zero due to the boundary condition (2.23).
The dispersion relation is now found by introducing the velocity components and

the pressure into the second dynamic boundary condition (2.23). The result is the well-
known dispersion relation for the viscous jet

α2
1 − 2α1k2Oh

[
1−

I1(k)
I0(k)

(
1
k
+

2kl
l2 + k2

(
I0(l)
I1(l)
−

1
l

))]
− k(1− k2)

I1(k)
I0(k)

l2
− k2

l2 + k2
= 0,

(3.11)
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which was first presented by Rayleigh (1892). For zero liquid viscosity (Oh→ 0), this
relation reduces to the Rayleigh (1878) result for the inviscid jet in a vacuum.

The complete set of solutions for the general dispersion relation (3.11) is presented
and discussed in detail in the work of Garcia & Gonzales (2008). It is composed of
the two capillary solutions and the hydrodynamic ones. For this analysis, the latter are
disregarded since they were shown to be irrelevant in the Rayleigh regime (Garcia &
Gonzales 2008). For disturbance wavenumbers 0 6 k 6 1, the two capillary solutions
α+1 and α−1 are real, one positive and the other negative. Due to the formulation of the
time dependency in the exponential function (see (3.2)), the unstable behaviour of the
jet is associated with the negative one (in the article of Garcia & Gonzales (2008),
this is the positive one due to their opposite convention). For wavenumbers k > 1,
the two solutions are conjugate complex with a positive real part. In the discussion
on the influence of the Ohnesorge number on satellite drop formation, we restrict
the exploration of Ohnesorge numbers to values below 0.1, for which the critical
damping wavenumber remains close to the cutoff wavenumber (see figures 2 and 3
in Garcia & Gonzales (2008)). This is not a limitation of the present work, since
the intermediate Ohnesorge numbers are the less studied cases. Accounting for both
capillary solutions, we formulate, for unstable modes, the first-order jet surface shape
as

η1(z, t)= (η̂+1 e−α
+

1 t
+ η̂−1 e−α

−

1 t) cos kz. (3.12)

The first-order initial conditions (2.24) require that initially the jet surface is
governed by the function cos kz and is at rest. These conditions reveal the following
expressions for the amplitudes η̂+1 and η̂−1 :

η̂+1 =−
α−1

α+1 − α
−

1
and η̂−1 =

α+1

α+1 − α
−

1
. (3.13a,b)

The first-order streamfunction, velocity components and pressure are then obtained as

ψ(r, z, t) = −
rI1(kr)
kI1(k)

[η̂+1 (2k2Oh− α+1 )e
−α+1 t
+ η̂−1 (2k2Oh− α−1 )e

−α−1 t
] sin kz

+ 2kOhr
[
η̂+1

I1(l+r)
I1(l+)

e−α
+

1 t
+ η̂−1

I1(l−r)
I1(l−)

e−α
−

1 t

]
sin kz

= ψ+1 +ψ
−

1 +ψ
+

2 +ψ
−

2 , (3.14)

ur1(r, z, t) = η̂+1

[
(2k2Oh− α+1 )

I1(kr)
I1(k)

− 2k2Oh
I1(l+r)
I1(l+)

]
e−α

+

1 t cos kz

+ η̂−1

[
(2k2Oh− α−1 )

I1(kr)
I1(k)

− 2k2Oh
I1(l−r)
I1(l−)

]
e−α

−

1 t cos kz

= [η̂+1 f+r (r)e
−α+1 t
+ η̂−1 f−r (r)e

−α−1 t
] cos kz, (3.15)

uz1(r, z, t) = −η̂+1

[
(2k2Oh− α+1 )

I0(kr)
I1(k)

− 2kl+Oh
I0(l+r)
I1(l+)

]
e−α

+

1 t sin kz

− η̂−1

[
(2k2Oh− α−1 )

I0(kr)
I1(k)

− 2kl−Oh
I0(l−r)
I1(l−)

]
e−α

−

1 t sin kz

= −[η̂+1 f+z (r)e
−α+1 t
+ η̂−1 f−z (r)e

−α−1 t
] sin kz, (3.16)
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p1(r, z, t) =
I0(kr)
kI1(k)

[η̂+1 α
+

1 (2k2Oh− α+1 )e
−α+1 t
+ η̂−1 α

−

1 (2k2Oh− α−1 ]e
−α−1 t) cos kz,

(3.17)

where the modified wavenumber l appearing in the coefficients C1 and C3 was
formulated with the two different values of α1 and denoted with the superscripts
corresponding to their signs. The functions ψ1, ψ2, fr and fz, defined for each growth
rate, are introduced to facilitate the expressions of the flow quantities. They will be
used in the following section.

3.2. Second-order solutions
We now proceed to the second-order equations (2.25)–(2.27) and consider wavenumbers
k< 1 yielding linear instability. The second-order equations form a system, which is
linear with respect to the second-order solutions, but nonlinear with respect to the
first-order solutions. The general solutions for the second-order velocity components,
pressure and jet surface shape are sought as a sum of two contributions

ur2(r, z, t)= ur21(r, z, t)+ ur22(r, z, t), (3.18)
uz2(r, z, t)= uz21(r, z, t)+ uz22(r, z, t), (3.19)
p2(r, z, t)= p21(r, z, t)+ p22(r, z, t), (3.20)

η2(z, t)= η21(z, t)+ η22(z, t), (3.21)

where the contributions with subscripts 21 are the solutions of the second-order
equations system including nonlinear first-order term products, and the contributions
with subscript 22 are the solutions of the homogeneous system.

The contributions to the second-order solutions with subscripts 21 are first
determined. Considering the second-order equations of motion (2.25)–(2.27) we
see that it is convenient to eliminate the second-order velocities from the momentum
equations using the continuity equation (2.25) to obtain a differential equation for the
second-order pressure p21. The resulting equation reads

1
r
∂

∂r

(
r
∂p21

∂r

)
+
∂2p21

∂z2
=−

1
r
∂

∂r

[
r
(

ur1
∂ur1

∂r
+ uz1

∂ur1

∂z

)]
−
∂

∂z

[
ur1
∂uz1

∂r
+ uz1

∂uz1

∂z

]
,

(3.22)

which we re-formulate into the compact form

1p21 =−div[(v1 · ∇)v1]. (3.23)

In this equation, v1 represents the first-order velocity field. Using the Lamé identity
for the convective derivative of v1, equation (3.23) becomes

1p21 =−div[∇v2
1/2− v1 × (∇× v1)]. (3.24)

For our present flow field, the cross-product of the velocity vector v1 with its curl
may be re-written as

v1 × (∇× v1)=−
1

Oh

(
α+1
ψ+2

r2
+ α−1

ψ−2

r2

)
∇ψ (3.25)
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so that we can express (3.24) in the form

1[p21 + v2
1/2] =−

1
Oh

div
[(
α+1
ψ+2

r2
+ α−1

ψ−2

r2

)
∇ψ

]
. (3.26)

This is a Poisson equation for the modified pressure P21 = p21 + v2
1/2. The structure

of the solution in terms of its dependency on the axial coordinate and on time is
determined by v2

1 and the products of first-order terms on the right-hand side of
(3.26). Both groups of terms contain exponential functions of twice the two rates
of growth or decay, −2α+1 and −2α−1 , and their sum, −(α+1 + α

−

1 ), each multiplied
by time. The Poisson equation is solved identically for each time dependency. The
exact homogeneous solution is first determined, and a particular solution is obtained
by approximating with a polynomial function the terms on the right-hand side of
the equation, which contains products of Bessel functions of different arguments.
The approximation is needed since no exact form of the particular solution could be
determined. The approximation is truncated at order 2N, where N is an integer. The
higher N, the more accurate the approximation. The overall procedure to determine
the complete solution is detailed in the Appendix, provided as a supplementary
document to this paper (https://doi.org/10.1017/jfm.2018.677), and leads to the
following expression for the second-order pressure p21:

p21(r, z, t)= p+21(r, z, t)+ p−21(r, z, t)+ p±21(r, z, t), (3.27)

p+21(r, z, t) =

[(
−

1
4
η̂+

2

1 (f
+

2

r − f+
2

z )+C+21I0(2kr)+
N∑

i=1

δ+2i,zr
2i

)
cos 2kz

−
1
4
η̂+

2

1 (f
+

2

r + f+
2

z )+

N∑
i=1

δ+2ir
2i
+ P+21

]
e−2α+1 t, (3.28)

p−21(r, z, t) =

[(
−

1
4
η̂−

2

1 (f
−

2

r − f−
2

z )+C−21I0(2kr)+
N∑

i=1

δ−2i,zr
2i

)
cos 2kz

−
1
4
η̂−

2

1 (f
−

2

r + f−
2

z )+

I∑
i=1

δ−2ir
2i
+ P−21

]
e−2α−1 t, (3.29)

p±21(r, z, t) =

[(
−

1
2
η̂+1 η̂

−

1 ( f+r f−r − f+z f−z )+C±21I0(2kr)+
N∑

i=1

δ±2i,zr
2i

)
cos 2kz

−
1
2
η̂+1 η̂

−

1 ( f+r f−r + f+z f−z )+
I∑

i=1

δ±2ir
2i
+ P±21

]
e−(α

+

1 +α
−

1 )t. (3.30)

In these equations, the coefficients C21 and P21 are unknown constants to be
determined. The other coefficients δ2i are imposed by the polynomial approximation
of the Bessel functions, and their expression are presented in the supplementary
Appendix.

From this pressure field and the equations of motion (2.25)–(2.27), the corresponding
second-order velocity components are determined. Using the definition of the total
pressure P21, the differential equation (2.26) for the radial velocity ur2 maybe written

https://doi.org/10.1017/jfm.2018.677
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in the form

r2 ∂
2ur21

∂r2
+ r

∂ur21

∂r
−

(
−

2α1

Oh
r2
+ 1
)

ur21 + r2 ∂
2ur21

∂z2
=

r2

Oh
∂P21

∂r
−

1
Oh2

∂ψ2

∂t
∂ψ

∂r
.

(3.31)

Following the same methodology as for the pressure field (see the supplementary
Appendix), the second-order radial velocity ur21 is obtained as

ur21(r, z, t)= u+r21(r, z, t)+ u−r21(r, z, t)+ u±r21(r, z, t), (3.32)

u+r21 =

[
D+21I1(2m+r)+C+21

k
α+1

I1(2kr)

+

N−1∑
i=1

ζ+2i+1r2i+1

]
e−2α+1 t cos 2kz, (3.33)

u−r21 =

[
D−21I1(2m−r)+C−21

k
α−1

I1(2kr)

+

N−1∑
i=1

ζ−2i+1r2i+1

]
e−2α−1 t cos 2kz, (3.34)

u±r21 =

[
D±21I1(2m±r)+C±21

2k
α+1 + α

−

1
I1(2kr)

+

N−1∑
i=1

ζ±2i+1r2i+1

]
e−(α

+

1 +α
−

1 )t cos 2kz, (3.35)

where we have introduced the modified wavenumbers m+
2
= k2

− α+1 /(2Oh),
m−

2
= k2

− α−1 /(2Oh) and m±2
= k2

− (α+1 + α
−

1 )/(4Oh). In these equations, the
constant coefficients D21 are unknowns to be determined. The other coefficients ζ2i+1
are imposed by the polynomial approximation of the Bessel functions, and their
expressions are given in the supplementary Appendix.

From the radial velocity ur21 and the continuity equation (2.25), the second-order
axial velocity uz21 is easily found and reads

uz21(r, z, t)= u+z21(r, z, t)+ u−z21(r, z, t)+ u±z21(r, z, t), (3.36)

u+z21(r, z, t) = −
1
2k

[
D+212m+I0(2m+r)+C+21

k
α+1

2kI0(2kr)

+

N−1∑
i=1

(2i+ 2)ζ+2i+1r2i

]
e−2α+1 t sin 2kz, (3.37)

u−z21(r, z, t) = −
1
2k

[
D−212m−I0(2m−r)+C−21

k
α−1

2kI0(2kr)

+

N−1∑
i=1

(2i+ 2)ζ−2i+1r2i

]
e−2α−1 t sin 2kz, (3.38)
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u±z21(r, z, t) = −
1
2k

[
D±212m±I0(2m±r)+C±21

2k
α+1 + α

−

1
2kI0(2kr)

+

N−1∑
i=1

(2i+ 2)ζ±2i+1r2i

]
e−(α

+

1 +α
−

1 )t sin 2kz. (3.39)

From the structure of the above solutions, the form of the second-order surface shape
η21 is deduced and reads

η21(z, t)= η+21(z, t)+ η−21(z, t)+ η±21(z, t), (3.40)

η̂+21(z, t)= (F+21 cos 2kz+G+21)e
−2α+1 t, (3.41)

η̂−21(z, t)= (F−21 cos 2kz+G−21)e
−2α−1 t, (3.42)

η̂±21(z, t)= (F±21 cos 2kz+G±21)e
−(α−1 +α

+

1 )t, (3.43)

where the coefficients F21 and G21 are unknown constants to be determined.
The second contributions to the second-order solutions, with subscripts 22, are

directly deduced from the equations for the linear problem, since they are of the
same structure as for first order, with the wavenumber k replaced by 2k, the growth
rate α1 by α2, the deformation amplitude η̂1 by η̂22 and the modified wavenumber l2

by m2
2 = 4k2

− α2/Oh. The growth rate α2 is obtained as a solution of a dispersion
relation which is formally equal to the first-order relation (3.11), but formulated with
double the wavenumber. The solutions for the two velocity components, the pressure
and the jet surface deformation with subscripts 22 read

ur22(r, z, t) = η̂
p
22

[
(8k2Oh− αp

2)
I1(2kr)
I1(2k)

− 8k2Oh
I1(m

p
2r)

I1(m
p
2)

]
e−α

p
2 t cos 2kz

+ η̂m
22

[
(8k2Oh− αm

2 )
I1(2kr)
I1(2k)

− 8k2Oh
I1(mm

2 r)
I1(mm

2 )

]
e−α

m
2 t cos 2kz

= [η̂
p
22 f p

2r(r)e
−α

p
2 t
+ η̂m

22 f m
2r(r)e

−αm
2 t
] cos 2kz, (3.44)

uz22(r, z, t) = −η̂p
22

[
(8k2Oh− αp

2)
I0(2kr)
I1(2k)

− 4kmp
2Oh

I0(m
p
2r)

I1(m
p
2)

]
e−α

p
2 t sin 2kz

− η̂m
22

[
(8k2Oh− αm

2 )
I0(2kr)
I1(2k)

− 4kmm
2 Oh

I0(mm
2 r)

I1(mm
2 )

]
e−α

m
2 t sin 2kz

= −[η̂
p
22 f p

2z(r)e
−α

p
2 t
+ η̂m

22 f m
2z(r)e

−αm
2 t
] sin 2kz, (3.45)

p22(r, z, t) = η̂
p
22
α

p
2

2k
(8k2Oh− αp

2)
I0(2kr)
I1(2k)

e−α
p
2 t cos 2kz

+ η̂m
22
αm

2

2k
(8k2Oh− αm

2 )
I0(2kr)
I1(2k)

e−α
m
2 t cos 2kz, (3.46)

η22(z, t) = [η̂p
22e−α

p
2 t
+ η̂m

22e−α
m
2 t
] cos 2kz, (3.47)

where we have denoted the two solutions of the dispersion relation for α2 by
superscripts p and m, since they may be either real or (conjugate) complex, depending
on the wavenumber k. In the case of the real solutions, the superscripts denote the
positive and negative values, and for the complex solutions they denote the positive
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and negative imaginary parts. The real part is positive for all the wavenumbers
1 6 2k 6 2. In this part of the solution, the unknowns to be determined are the
amplitude parameters, η̂p

22 and η̂m
22, corresponding to the two solutions for α2, αp

2 and
αm

2 , respectively.
The second-order solutions are fully characterised if the constants C21, D21, F21,

G21, P21 for each time dependency and η̂
p
22 and η̂m

22 are known. To determine these
coefficients we use the initial and boundary conditions. The five coefficients for each
time dependency are determined with the three boundary conditions projected on each
vector of the basis (1, cos 2kz). Since the first dynamic condition admits no component
on the first vector of the basis, the projection of the boundary conditions leads to
five equations, that allows us to determine the five coefficients. The remaining two
coefficients η̂p

22 and η̂m
22 are determined by the two initial conditions. The expressions

of the various coefficients are reported in the supplementary Appendix.

3.3. The inviscid case
For zero liquid viscosity (Oh→ 0), the dispersion relation (3.11) reduces to the one
obtained by Rayleigh (1878), which exhibits two solutions α1 with the same absolute
value, but different signs. The two amplitudes η̂+1 and η̂−1 of the first-order jet surface
shape in (3.13) assume therefore the same value of 1/2. The two velocity components,
pressure and jet surface shape then reduce to the inviscid solutions obtained by Yuen
(1968). These first-order solutions are represented in the real form as

ur1,0(r, z, t)= α1
I1(kr)
I1(k)

cos kz sinh α1t, (3.48)

uz1,0(r, z, t)=−α1
I0(kr)
I1(k)

sin kz sinh α1t, (3.49)

p1,0(r, z, t)=−α2
1

I0(kr)
kI1(k)

cos kz cosh α1t, (3.50)

η1,0(z, t)= cos kz cosh α1t (3.51)

as in the inviscid limit α1=α
+

1 =−α
−

1 . In retrieving the second-order inviscid solutions
obtained by Yuen (1968), the two solutions for α1 make all the functions e−(α

+

1 +α
−

1 )t

assume the value of unity and the two solutions of the second-order dispersion
relation, αp

2 and αm
2 , are imaginary or real, according to the position of k with respect

to 1/2, but in both cases of opposite signs. The coefficients of the inviscid solutions
are obtained with the same procedure as for the viscous case, except that the zero
shear stress boundary condition drops out and there is one unknown coefficient less,
and that there is no need for a polynomial approximation. The Poisson equation for
the modified pressure is reduced to a Laplace equation, whose solution is P21 =PH

21.
Reducing the coefficients to their inviscid contributions (Oh → 0) yields: C±21 = 0,
C+21 =C−21 =C21, F+21 = F−21 = F21, G+21 =G−21 =G21, P+21 = P−21 = P21 and η̂p

22 = η̂
m
22 = η̂22.

The expressions of the coefficients are presented in the supplementary Appendix.
All the coefficients correspond to the ones obtained by Yuen (1968), apart from a
factor of 1/2, which appears in our solutions represented in exponential functions of
time rather than hyperbolic cosines or sines. Our solutions include the corrections
inferred by Rutland & Jameson (1970). The solutions for the radial and axial velocity
components, as well as for the jet surface shape, obtained from our analysis for the
inviscid case therefore agree exactly with the (corrected) solutions by Yuen (1968).
Our pressure p2,0 for the inviscid case, however, differs from the form one can derive
from Yuen’s results (1968). This is due to a misprint in his second-order potential.
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We write down the second-order inviscid solutions as

ur2,0(r, z, t) =
[
(16F21 + (1− 2kIa))

α1

4
I1(2kr)
I1(2k)

sinh 2α1t

− (2F21 + F±21)α2
I1(2kr)
I1(2k)

sinh α2t
]

cos 2kz, (3.52)

uz2,0(r, z, t) =
[

2C21
k
α1

I0(2kr) sinh 2α1t

+ (2F21 + F±21)α2
I0(2kr)
I1(2k)

sinh α2t
]

sin 2kz, (3.53)

p2,0(r, z, t) =
[
−

[
−2C21I0(2kr)+

α2
1

8I2
1(k)

(I2
1(kr)− I2

0(kr))
]

cosh 2α1t

− 2η̂22
α2

2

2k
I0(2kr)
I1(2k)

cosh α2t+
α2

1

8I2
1(k)

(I2
1(kr)− I2

0(kr))
]

cos 2kz

+

[
2P21 −

α2
1

8I2
1(k)

(I2
1(kr)+ I2

0(kr))
]

cosh 2α1t

+P±21 +
α2

1

8I2
1(k)

(I2
1(kr)+ I2

0(kr)), (3.54)

η2,0(z, t) = (2F21 cosh 2α1t− (2F21 + F±21) cosh α2t+ F±21) cos 2kz
+ 2G21 cosh 2α1t+G±21, (3.55)

where we have denoted α2 = α
+

2 =−α
−

2 .
In the following section we use our solutions to analyse the nonlinear stability

behaviour of a Newtonian liquid jet.

4. Predictions and limitations of the jet model
The jet surface shape is formulated with the help of the first- and second-order

solutions η1(z, t) and η2(z, t), derived in the previous section, in the form

rs(z, t)= 1+ η0η1(z, t)+ η2
0η2(z, t). (4.1)

To discuss each dependency in the solutions η1(z, t) and η2(z, t), the functions B11(t),
B20(t) and B22(t) are introduced as per

η1(z, t)= B11(t) cos kz, (4.2)
η2(z, t)= B20(t)+ B22(t) cos 2kz. (4.3)

These functions depend a priori on two parameters: the wavenumber k and the
Ohnesorge number Oh. Their expressions are obtained by developing the solutions
η1(z, t) and η2(z, t):

B11(t)= η̂+1 e−α
+

1 t
+ η̂−1 e−α

−

1 t, (4.4)

B20(t)=G+21e−2α+1 t
+G−21e−2α−1 t

+G±21e−(α
−

1 +α
+

1 )t, (4.5)

B22(t) = F+21e−2α+1 t
+ F−21e−2α−1 t

+ F±21e−(α
−

1 +α
+

1 )t

+ η̂
p
22e−α

p
2 t
+ η̂m

22e−α
m
2 t. (4.6)
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In particular, for the limiting inviscid case Oh= 0, the previous expressions simplify
to the forms (note that the same notations as in Yuen (1968) are used)

B11(t)= cosh α1t, (4.7)
B22(t)= 2F21 cosh 2α1t+ 2η̂22 cosh α2t+ F±21, (4.8)

B20(t)= 2G21 cosh 2α1t+G±21. (4.9)

With these functions, the surface shape rs(z, t) in (4.1) can be reformulated as a
Fourier series, which allows for explicit representation of the modal contributions. In
doing this, and introducing the variable u= kz, rs(z, t) becomes

rs(u, t)= 1+ η2
0B20(t)+ η0B11(t) cos u+ η2

0B22(t) cos 2u. (4.10)

From this reformulation, we see that B11(t) represents the linear contribution, B20(t)
the second-order contribution to mode 0 and B22(t) the second-order contribution to
mode 2. The first nonlinear term is related to volume conservation in the non-planar
geometry, the second to momentum transport in the flow. For the following analysis
we emphasise that B11(t) is strictly positive and B20(t) is strictly negative for all k
and Oh, while the sign of B22(t) depends on k and Oh. The amplitude of mode 1 is
thus given by η0B11(t), the amplitude of mode 2 by η2

0|B22(t)| and the second-order
amplitude of mode 0 by −η2

0B20(t). The phase between the mode 2 and the mode 1
is given by the sign of B22(t) since B11(t) > 0. Introducing the quantities q20(t) and
q22(t),

q20(t)=−
B11(t)

4η0B20(t)
and q22(t)=−

B11(t)
4η0B22(t)

(4.11a,b)

allows us to express the ratio of the amplitude of mode 1 to the second-order one of
mode 0 or the one of mode 2 within a factor of 1/4. The k values for which B22(t)
is identically zero, (k= 0 and k= 0.5) and thus q22(t) is indeterminate, are excluded.
With these functions, rs(u, t) can be re-written in the form

rs(u, t)= 1+ η0B11(t)
(
−

1
4q20(t)

+ cos u−
1

4q22(t)
cos 2u

)
. (4.12)

It should be noted that rs(−u, t)= rs(u, t), and thus the surface shape, is symmetrical
with respect to the plane u= 0 in the interval [−π,π].

For a given time t> 0 and a wavenumber k 6= {0, 0.5}, the extrema of the jet surface
shape are determined in the interval [0,π], taking advantage of the planar symmetry
of the surface shape on one period. The extrema exhibit a zero first-order derivative
of rs(u, t) with respect to u, which reads

∂rs

∂u
= 0→

[
1−

cos u
q22(t)

]
sin u= 0. (4.13)

The solution of (4.13) is

u=

{
u1 = 0; u2 =π if |q22(t)|> 1
u1 = 0; u2 =π; u3 = cos−1 q22(t) if |q22(t)|6 1.

(4.14)
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The nature of each extremum depends on the sign of the second derivative of rs(u, t)
with respect to u evaluated at each extremum point. This quantity reads

∂2rs

∂u2
= η0B11(t)Pq22(t)(cos u), (4.15)

with Pq(X)=[(2/q)X2
−X− 1]. Pq(X) admits two real roots X−(q)= (q−

√
q2 + 8)/4

and X+(q)= (q+
√

q2 + 8)/4. The inequality −1 6 X−(q)6 q 6 X+(q)6 1 holds on
the interval [−1, 1] of q and we have −1<X−(q)< 1<X+(q) for q> 1 and X−(q)<
−1< X+(q) < 1 for q<−1. Thus, for −1 6 q22(t)6 1, the sign of ∂2rs(u, t)/∂u2 is
given by the sign of −q22(t) for solution u3 (cos(u3)= q22(t)) and by the sign of q22(t)
for solutions u1 and u2 (cos(u1)= 1 and cos(u2)=−1). For q22(t) > 1, it is given by
the sign of −q22(t) for u1 and q22(t) for u2. For q22(t)<−1, it is the other way round.

The jet model therefore predicts three possible surface shapes according to the
absolute value of q22(t) relative to unity and its sign:

(i) if |q22(t)|> 1, there are two extrema only in the interval [0,π] of u: a maximum
at u1 and a minimum at u2. This defines the surface shape (I);

(ii) if |q22(t)|6 1, there are three extrema in the interval [0,π] of u at u1, u2 and u3.
The nature of these extrema depends on the sign of q22(t).
(1) If q22(t) > 0, the extrema at u1 and u2 are two minima, and the extremum

at u3 is a maximum. The latter root belongs to the interval [ 0,π/2 ].
(2) If q22(t) < 0, the opposite is true: the extrema at u1 and u2 are two maxima,

and the extremum at u3 is a minimum. The latter root is located in the
interval ]π/2,π ].

These two cases define the surface shapes (II) and (III), respectively.

Subtracting the mode 0 from the function rs(u, t) and normalising this difference
by the amplitude of mode 1, η0B11(t), allows for a simpler representation of the three
surface shapes as functions of q22. This manipulation leads to the expression

rs(u, t)− 1
η0B11(t)

+
1

4q20(t)
= cos u−

1
4q22(t)

cos 2u=Qq22(u). (4.16)

Figure 3 presents Qq22(u) versus u in the interval [−π,π] for different values of q22
(q22 = 100 > 1, 0 < q22 = 1/2 < 1 and −1 < q22 = −1/2 < 0) to illustrate the three
surface shapes identified here. In particular, the variation of the number of extrema
and of their nature as a function of q22 can be observed.

The above analysis has established three surface shapes depending on the value
and sign of the parameter q22(t). As mentioned previously, the absolute value of this
parameter represents the ratio of the amplitude of mode 1 to the one of mode 2, within
a factor 1/4. This ratio varies with time. At early times, it is very large compared
to unity because the nonlinear contribution is supposed negligible. The surface shape
(I) is predicted according to the previous analysis, characterised by a deformation
maximum at u = 0 and a deformation minimum at u = +π on a half-period, as
represented by the solid line in figure 3 for a particular value of q22= 100> 1. Here,
we retrieve the surface shape imposed by the initial condition. As time grows, the
amplitude ratio decreases. The value four is reached at a certain time, denoted by tc;
tc therefore satisfies |q22(tc)| = 1 and depends on both parameters k and Oh. From this
time on, the surface shape changes according to the previous analysis. The surface
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FIGURE 3. Surface shapes Qq22(u) as a function of u on the interval [−π, π] for three
values of q22: q22 = 100 (solid line), q22 =+1/2 (dashed line), q22 =−1/2 (dotted line).

shapes (II) and (III) are predicted depending on the sign of q22. A positive q22 leads
to the surface shape (II), characterised by a secondary deformation minimum on
the level of the primary deformation maximum and illustrated by the dashed line in
figure 3 for a particular value of q22 =+1/2< 1. On the other hand, a negative q22

yields the surface shape (III), characterised by a secondary deformation maximum on
the level of the primary deformation minimum and illustrated by the dotted line on
figure 3 for a particular value of q22 =−1/2>−1. Note that only the configuration
(III) may lead to the formation of satellite drops between the main ones.

In the development of the temporal capillary instability, the surface shape may thus
pass from configuration (I) to either (II) or (III), according to the present analysis. The
time of change depends on k and Oh. In the following we first analyse the effect of
k and then of Oh on the growth of secondary deformations. For all cases examined,
the value of the amplitude parameter η0 is set to 0.01, which is small enough for the
validity of the model.

4.1. Effect of wavenumber k
In this section, we focus on the inviscid case Oh= 0 to understand the influence of
the wavenumber k on the jet model. For each k, the time limit tc, characterising the
change from surface shapes (I) to (II) or (III) is determined. This time is solution of
q22(t)= 1 or q22(t)=−1, depending on the sign of the parameter q22(t). The study of
the sign with respect to wavenumber k reveals that for k< kc≈ 0.718, q22(t) is strictly
negative, and for k> kc, it is strictly positive, indicating that the surface shape changes
from (I) to (III) below kc and from (I) to (II) above it. We note that kc is slightly
greater than the most unstable wavenumber kopt ≈ 0.697. The equation q22(t)= ε with
ε= 1 or −1 is solved numerically for the corresponding domain of k, k< kc or k> kc.
The time limit curve tc(k) obtained is plotted in figure 4. For k< kc, it represents the
initiating time of the model for satellite drop formation. For example, for k= 0.3, this
time equals 18.9. The (t–k) domain for satellite drop formation is thus delimited by
the lower branch of the tc curve.
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FIGURE 4. Surface shape diagram in the (t, k) space for the inviscid case. The thick solid
line represents the time limit tc(k) separating surface shapes (I) and (III) for k< kc(Oh=
0)≈ 0.718 and (I) and (II) for k > kc(Oh= 0). The dashed line indicates the time limit
tb(k) imposed by jet breakup. The thin solid line corresponds to the time limit for volume
conservation up to 1 %.

The above derived (t–k) domain is reduced, since the jet breakup arises in a time
tb. For each k, tb(k) satisfies the condition

rs(u, tb)= 0. (4.17)

The jet breakup occurs on the level of the minima of the surface. A minimum is
reached either at the root u3 if k< kc and t> tc(k), or at the root u2 for the other cases.
The jet breakup time is thus obtained by solving numerically the equation rs(u3, t)= 0
for each k< kc and t > tc, and rs(u2, t)= 0 for the other cases. Figure 4 presents this
limiting curve. Its intersection with the time limit tc(k) marks the value of k, denoted
by kbc, beyond which the model does not predict the observation of satellite drops
before breakup occurs. For the inviscid case, kbc≈0.578. The (t–k) domain for satellite
drop formation is thus reduced to the region located below the tb curve (see figure 4).
It should be added that the surface shape (II) is not predicted to be observable before
jet breakup since for k> kc, tb(k) < tc(k).

We now determine the time limit for which the conclusions of the model can be
considered safe. The second-order approximation with respect to η0 relies on the
assumption that the surface deformation remains small compared to the undeformed
jet radius. This assumption imposes the following time condition:

η0B11(t)� 1→ t� t110(k). (4.18)

In particular for the inviscid case t110(k)= (cosh−1(1/η0))/α1(k). Moreover, the second-
order approximation is valid only if the second-order terms remain small compared to
the first-order ones, leading to the following conditions on q20 and q22:

q20(t)� 1/4 and |q22(t)| � 1/4→ t�min(t201(k), t221(k)). (4.19a,b)
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FIGURE 5. Deviation R(k, tb) of the deformed jet volume from the cylindrical case as a
function of k.

These three conditions lead to an upper time limit for the validity of the model defined
by min(t110(k), t201(k), t221(k)). Another criterion relevant for the validity of the model
is a volume conservation condition. Volume conservation between the jet of cylindrical
shape and the deformed one is indeed satisfied by the model only to second order
in η0. The deviation from the initial jet volume can be determined analytically. The
volume of the deformed jet, denoted by V(t), is given as

V(t)= 2
∫ π/k

0
πr2

s (z, t) dz=
2π

k

∫ π

0
r2

s (u, t) du. (4.20)

Evaluating this integral yields

V(t)=
2π2

k

[
1+ η4

0

(
B2

20(t)+
1
2

B2
22(t)

)]
. (4.21)

The volume of the undisturbed cylindrical jet is given by

Vc =
2π2

k
. (4.22)

The ratio of the two volumes equals

V(t)
Vc
= 1+ η4

0

[
B2

20(k, t)+
1
2

B2
22(k, t)

]
= 1+ R(k, t). (4.23)

The deviation R from the undisturbed cylinder is of fourth order in η0, strictly positive
and growing in time, since the second-order contribution becomes more and more
significant with time. Therefore, the volume of the deformed jet in comparison to the
undisturbed cylinder is overestimated to a factor which grows in time. The variation
of R with the wavenumber k is illustrated in figure 5 for the time tb of jet breakup
predicted by the model, as determined previously. It is seen that the jet volume is
better conserved for higher wavenumber.
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FIGURE 6. Comparison for different choices of validity times. The thick solid line
represents the limit time tc(k) separating surface shapes (I) from (III) and the dotted line
the limit time for breakup tb(k). The three thin solid lines are from left to right: tv,0.5 %,
tv,1 %, tv,10 %. The three dashed lines are from bottom to top: t222, t110, t220.

From the deviation R, a time limit is defined, denoted by tv,val, for volume
conservation up to val in per cent, as the solution of the equation

R(k, t)= val. (4.24)

Three values for val are tested: 0.5 %, 1 % and 10 %. The different times for model
validity are compared in figure 6.

It can be observed that the time limits based on a volume conservation criterion less
than 10 % are shorter than the other validity times imposed by the small-amplitude
perturbation method. In the following, we set tv,1 %(k) as the validity time of our
jet model. Since tv,1 %(k) is shorter than tb(k) for all k, the k domain for which the
surface shape (III) can be safely predicted is reduced to wavenumbers less than kvc≈

0.481, the wavenumber corresponding to the intersection point between the curves
tc(k) and tv,1 %(k). The (t, k) domain for satellite drop formation, safely predicted by
the model, is thus the region bounded by the curves tc(k) and tv,1 %(k) (see figure 4).

We now study the effect of the wavenumber k on the growth of secondary
deformations in the (t, k) regime for satellite drop formation (k< kvc).

Figure 7 presents surface shapes for the two wavenumbers k= 0.1 and k= 0.4 at the
three instants of time t=0, t= tc(k) and t= tv,1 %(k). From the comparison between the
two cases it can be seen that for the larger value of k and at time t= tv,1 %(k) > tc(k),
the position of the secondary deformation minimum is closer to π (the position of
the primary deformation minimum) and the secondary deformation amplitude is of a
smaller magnitude. These observations are confirmed quantitatively for all k < kvc in
figure 8, where the extension E and amplitude A of the secondary deformation versus
k are presented. These quantities are defined as

E(t, k)=
π− u3(t)

πk
and A(t, k)= rs(π, t)− rs(u3, t). (4.25a,b)

Figures 8(a) and 8(b) show a decreasing trend of E(tv,1 %, k) and A(tv,1 %, k) with
increasing k, respectively. The satellite drop formed between the main drops is thus
expected to be of smaller size with larger wavenumber.
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FIGURE 7. Surface positions rs(u, t) for k = 0.1 (solid lines) and k = 0.4 (dashed lines)
at the three time instants 0, tc(k) and tv,1 % as functions of u in the interval [0, π]. The
inset figure shows rs(u, t= 0).
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FIGURE 8. Evolution of the (a) extension E(tv,1 %, k) and (b) amplitude A(tv,1 %, k) of the
secondary deformation versus k for the inviscid case.

4.2. Effect of the Ohnesorge number
We now analyse the influence of the Ohnesorge number on the relevant characteristic
wavenumbers and times determined in the previous section: kc, kopt, kvc, tc(k), tv,1 %(k)
for the two wavenumbers k= 0.1 and k= 0.4.

A convergence analysis with respect to the approximation index N was carried out
to measure the influence of the approximation part on the general solution for various
values of the Ohnesorge number and wavenumber. The relative difference between the
second-order pressure computed with index N and N+ 1 evaluated at r= 0.5 and time
t = 1 was calculated for k = {0.3, 0.6} and for various Ohnesorge numbers between
10−4 and 1. It was found that the pressure converges to within 0.1 % for a given k at
an approximation index N that is smaller for increasing Oh number. For instance, the
convergence criterion is reached for k= 0.6, for N = 100 at Oh= 10−4 and for N = 3
at Oh= 1. The convergence is slightly faster (smaller N) for smaller k. By ignoring
the approximation part of the solution, the relative error inferred on the second-order
pressure was determined for the same wavenumbers and at the same radial position,
but at the intermediate time t = 10. It was found that the error remains below two
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FIGURE 9. Relative deviation of the characteristic wavenumbers and times from the
inviscid case versus Oh: (a) δkc(Oh) (E), δkvc(Oh) (A) and δkopt(Oh) (@) (b) δtc(k =
0.1,Oh) (@), δtc(k= 0.4,Oh) (A), δtv,1 %(k= 0.1,Oh) (E) and δtv,1 %(k= 0.4,Oh) (C).

per cent for the range of Ohnesorge numbers explored here. For this analysis, the
approximate part of the solution is thus ignored and the approximation index N is
therefore set to zero.

The relative deviations of the characteristic wavenumbers and times from their
inviscid values when increasing the Ohnesorge number Oh between 10−5 and 0.1 are
presented in figures 9(a) and 9(b), respectively. The relative wavenumber deviation is
defined by δk(Oh)= (k(Oh= 0)− k(Oh))/k(Oh= 0), with k being either kc, kopt or kvc.
The defined wavenumber deviation is positive, since the viscous values are all found
to be below the inviscid value for the range of Ohnesorge numbers explored. The
relation between kopt and kc for the inviscid case, that is kc > kopt, remains true for all
the viscous cases studied here. The wavenumber deviations are seen to increase with
the Ohnesorge number and their maximum values to be less than 10 %. Similarly, the
relative time deviation is defined by δt(k,Oh)= (t(k,Oh)− t(k,Oh= 0))/t(k,Oh= 0),
with t being either tc(k) or tv,1 %(k). The time deviations are evaluated at two
wavenumbers limiting the satellite drop regime, safely predicted by our model (see
previous section): k = 0.1 and k = 0.4. The viscous times are found to be larger
than the inviscid one (the time deviations are all positive), in agreement with the
damping effect induced by viscosity. The time deviations are found to increase with
the Ohnesorge number, and the maximum deviations are slightly larger than for the
wavenumbers. The maximum deviation is approximately 15 % (see figure 9b). The
limiting wavenumbers and times therefore depend on the Ohnesorge number over
the four decades of its value. This result shows that the influence of the Ohnesorge
number is to reduce the domain of k for which the change from regime (I) to (III)
can be observed, i.e. the regime of satellite drop formation delimited by kvc(Oh)
(considering our choice of validity time for the model). Moreover, it is to delay the
formation of satellite drops for wavenumbers smaller than kvc(Oh).

It is now interesting to analyse how the surface shape diagram in the (t–k) plane is
modified by increasing Ohnesorge number. Such diagram is plotted for an intermediate
value of the Ohnesorge number Oh = 0.05 in comparison to the inviscid case in
figure 10. The various observations made on the limiting wavenumbers and times are
retrieved: kc (the intersection of the two branches of the tc curve), kbc (the intersection
between the breakup time curve and the tc curve) and kvc (the intersection between
the tc curve and the tv,1 % curve) are lower than their corresponding inviscid values,
while tc(k), tb(k) and tv,1 %(k) are larger for the k examined (note that this is not true
for k near kc(Oh = 0)). An interesting observation is that for small wavenumbers,
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FIGURE 10. Deviation of the (t–k) diagram from the inviscid case (grey lines) for an
intermediate Oh= 0.05 (dark lines). The thick solid lines represent the change from shape
configuration (I) to (II) or (III) depending on the position of k with respect to kc(Oh). The
dotted lines indicate the breakup time of the jet model. The thin solid lines materialise
the volume conservation criterion up to 1 %.

(below 0.2) the effect of viscosity seems to vanish since the viscous curves are
superposed with the inviscid ones. This is not surprising because the viscous shear is
larger for shorter wavelengths.

This observation is confirmed for other Ohnesorge numbers in figure 11. Surface
shapes are presented in comparison to the inviscid case for the three values
(0.0005, 0.005, 0.05) of Oh, and the two values (0.1, 0.4) of k in the regime
of satellite drop formation at the two time instants (tc(k), tv,1 %(k)). For k = 0.1, the
viscous curves and the inviscid one are superposed. For k= 0.4, the effect of viscosity
is observable. It is shown that the amplitude of the surface shape is larger for the
viscous case than for the inviscid one at the corresponding limiting times. This is due
to the fact that the limiting times are increasing functions of the Ohnesorge number.
It can therefore be expected that, for larger Ohnesorge numbers, the damping effect
may compensate the increase of the limiting time and lead to smaller amplitudes of
the jet surface.

This is indeed observed at the breakup time of the model (for which the conclusions
of the weakly nonlinear theory are not safe and should be taken carefully), as
illustrated in figure 12, where the extension E(tb, k, Oh) of the satellite drop and
its amplitude A(tb, k, Oh) are plotted versus k for an intermediate Oh = 0.05 in
comparison to the inviscid case. It can be seen that the extension of the satellite
drop weakly depends on the Ohnesorge number examined here (for higher Ohnesorge
numbers, it tends to decrease). And the amplitude of the satellite drop is higher at
breakup time for the inviscid case, in agreement with the damping effect induced by
viscosity. Again, we note that, for small wavenumbers, a weak effect of viscosity is
observable.

5. Comparison to previous work
In the previous section, the influence of the wavenumber k and the Ohnesorge

number Oh on the jet behaviour from our second-order weakly nonlinear model was
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FIGURE 11. Interface shapes for three Ohnesorge numbers, two wavenumbers at the time
instant tc(k,Oh) and tv,1 %(k,Oh) in the interval [0,π] (a) Oh= 0.0005, k= 0.1 (b) Oh=
0.0005, k= 0.4 (c) Oh= 0.005, k= 0.1 (d) Oh= 0.005, k= 0.4 (e) Oh= 0.05, k= 0.1 ( f )
Oh= 0.05, k= 0.4. The inviscid case is represented by the dashed lines.

analysed. Because the model is not based on volume conservation at all time, a time
limit for validity of the model was chosen, in order to ensure that any conclusion
from the model is safe. The analysis has revealed the main characteristics of the
influence of the wavenumber k and the Ohnesorge number Oh on the formation
of satellite drops. For the influence of the wavenumber k, it is shown that: (i)
Satellite drop formation does not occur at all unstable wavenumbers but for a
reduced k domain k 6 kbc, where kbc is imposed by the jet breakup condition and
the possibility of observing the formation of a secondary deformation maximum
between two consecutive primary deformation ones, (i.e. the surface shape (III)). (ii)
The characteristic time tc for observing the apparition of surface shape (III) and
thus the formation of a satellite drop is a function of k. For k 6 kbc, it decreases
and eventually increases with the wavenumber k. The minimum is reached at a
wavenumber different from the most unstable one. (iii) The breakup time tb decreases
and increases with the increase of the wavenumber k. The minimum is not reached
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FIGURE 12. Evolution of (a) the extension E(tc, k,Oh) and (b) the amplitude A(tc, k,Oh)
of the supposed satellite drop (solid lines – Oh= 0.05, dashed lines – Oh= 0).

at the most unstable wavenumber, as predicted by linear theory. (iv) The volume
conservation at breakup time is better satisfied for larger k. (iv) The satellite drop
formed between the main drops is expected to be smaller with larger wavenumber.
(v) The condition for volume conservation up to 1 % reduces the (t–k) domain for
satellite drop formation to wavenumbers k 6 kvc and to times t 6 tv,1 %.

The conclusions, except (i) and (v), agree reasonably well with the results reported
in previous work, using direct numerical simulations to study liquid jet breakup
(Ashgriz & Mashayek (1995) and Dumouchel et al. (2017)). The characteristic time tc

was originally determined in the study of Ashgriz & Mashayek (1995) and denoted by
tb1. Its temporal evolution is similar to ours for the satellite drop k-domain. However,
the minimum was found to occur at the most unstable wavenumber. Similarly, the
evolution of the breakup time against k is in good agreement with the one presented
in each of the studies. In particular, for the same parameter conditions as Dumouchel
et al. (2017) (η0 = 0.05 and Oh = 0.0065), we found that the minimum is reached
at k = 0.72, close to the value reported by the authors (k = 0.75). Moreover, it is
not surprising to observe that the volume conservation is better satisfied for large
wavenumber at a given time because the nonlinearities manifest later for large
wavenumber, as reported in the two numerical studies discussed here. This is also
confirmed by experimental observations (see figure 1). Finally, the conclusion of
decreasing satellite size with increasing wavenumber has been already reported by
Goedde & Yuen (1970) and confirmed by several studies, including those of Ashgriz
& Mashayek (1995) and Dumouchel et al. (2017).

The first and last conclusions are direct consequences of the choice of the analytical
method to approximate the temporal evolution of the liquid jet. It is interesting to
note, as said in the introduction, that results about the unstable k domain for satellite
drop formation are sparse. In the pioneering study of Rutland & Jameson (1971),
satellite drop formation is observed at all unstable wavenumbers, as illustrated in
figure 1 at three unstable wavenumbers k= 0.075, k= 0.250 and k= 0.683. For these
experiments, the Ohnesorge number is 1.9× 10−3. However, in the work of Vassallo &
Ashgriz (1991) for which the Ohnesorge number is similar, Oh= 6.4× 10−3, satellite
drops could not be observed for wavenumbers larger than 0.57. Besides, the volume
conservation condition, used in our case to guarantee the validity of our second-order
weakly nonlinear model, is not needed in direct numerical simulations, where all the
nonlinear terms of the jet problem are considered, within numerical errors, and so
the volume conservation can be satisfied for all times.
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Regarding now the influence of the Ohnesorge number at a given wavenumber,
results show that, with increasing Ohnesorge number: (vi) The characteristic
wavenumbers decrease and therefore the satellite drop k domain is reduced. (vii)
The characteristic times increase and therefore the satellite drop formation is retarded.
(viii) The satellite drop formed between the main drops is expected to be smaller
with larger Ohnesorge number. (ix) The effect of viscosity increases with k in the
k domain of satellite drop formation. These conclusions agree reasonably well with
the results of Ashgriz & Mashayek (1995), for which the Ohnesorge number Oh
was varied. More precisely, they observed for a given k a retardation of the satellite
drop formation and a decrease of the satellite size with increasing Ohnesorge number,
until suppression of the satellite drop for sufficiently high Oh. The satellite/no
satellite limiting Oh was shown to be a function of k, and in particular, for small
wavenumbers, Oh for which satellite drops are suppressed is strongly increased.
Therefore, the ultimate effect of viscosity causing the suppression of satellite drops,
is strongly delayed as the wavenumber is reduced. This corresponds to findings from
the experiment (Goedde & Yuen 1970; Brenn & Frohn 1993).

Of particular interest is the influence of both parameters, the wavenumber k and
the Ohnesorge number Oh, on the nonlinear growth rate of the amplitude of the
primary deformation maximum and minimum (swell and neck) and their difference.
This was discussed in the literature, first in Goedde & Yuen (1970), then in Ashgriz
& Mashayek (1995), and more recently in Gonzales & Garcia (2009) and Dumouchel
et al. (2017). Here, we only present the predictions inferred by our second-order
model on growth rates of the amplitude of the neck, swell and their difference.
In fact, the amplitude of the jet surface at the primary deformation maximum and
minimum can be obtained analytically. The normalised amplitude of the neck point
AN(t) is given by

AN(t)=
rs(u= 0, t)− (1+ η2

0B20(t))
η0

= B11(t)+ η0B22(t)= B11(t)
(

1−
1

4q22(t)

)
.

(5.1)

Similarly, the amplitude of the swell point AS(t) reads

AS(t)=
(1+ η2

0B20(t))− rs(u=π, t)
η0

= B11(t)− η0B22(t)= B11(t)
(

1+
1

4q22(t)

)
.

(5.2)

The difference between the neck and swell points ANS(t) is deduced as

ANS(t)=
rs(u= 0, t)− rs(u=π, t)

η0
= 2B11(t). (5.3)

We retrieve the fact that the nonlinear terms with respect to the small-amplitude
parameter (here only the second-order ones) cancel out in the difference between the
amplitude of the neck and the swell, as indicated by Goedde & Yuen (1970). A
direct measurement of the linear growth rate is thus more appropriate by plotting the
‘peak to peak’ amplitude than the individual peak amplitudes. Figure 13 shows the
normalised amplitudes of the neck, the swell and their difference calculated with our
model for two wavenumbers k= {0.1, 0.4} and two Ohnesorge numbers Oh= {0, 0.1}
versus normalised time t/tv,1 %. A semilog diagram is used to highlight the growth
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FIGURE 13. Variation of the amplitude of the primary deformation maximum (dashed
line), the minimum (dotted line), and the difference between them (solid line) as a function
of the normalised time t/tv,1 %(k,Oh); (a) k= 0.1, Oh= 0; (b) k= 0.4, Oh= 0; (c) k= 0.1,
Oh= 0.1; (d) k= 0.4, Oh= 0.1.

rates of the amplitudes. Several features, reported in the numerical work of Ashgriz
& Mashayek (1995), can be observed. For a given set of parameters (k,Oh) we see
that, after a relatively short period of time, the evolution is linear for the three curves,
showing identical slopes, as expected from linear theory. From a certain time on,
the curves for the amplitude of the swell and neck start to deviate from the linear
behaviour, exhibiting higher or lower values, respectively.

This is due to the growth of the nonlinear term η0B22(t). The deviation becomes
significant when the nonlinear term assumes the same order as the first-order one
(B11(t)). According to equations (5.1) and (5.2), this occurs when q22(t)=1/4, thus for
a time ta shorter than tc (because tc is defined by q22(tc)= 1 for k< kc). The time of
departure ta from the linear behaviour and the amplitude of deviation both depend on
k and Oh. The dependence is consistent with the previous conclusions. The departure
time is closer to the limiting time for volume conservation up to 1 % for the larger
value of k (k= 0.4, see figure 13b). This can be seen in figure 3 by comparing tc and
tv,1 % in the satellite drop domain. On the other hand, the deviation amplitude is found
to be greater for the smaller value of k (k=0.1, see figure 13a), in agreement with the
conclusion that the nonlinearities manifest earlier for small wavenumber. The influence
of the Ohnesorge number is to decrease the gap between ta and tv,1 % (see figure 10
for a comparison between tc(k, Oh) and tv,1 %(k, Oh)). Moreover, it slightly reduces
the deviation amplitude. Both effects are better observable for the k= 0.4 case, since
the effects of viscosity are stronger at higher wavenumbers. Interestingly, the transient
initial phase on the amplitude curve, which is discussed in great detail by Garcia &
Gonzales (2008), is observed here. This is because the two capillary modes (and not
only the dominant one) were considered in the jet model.

A more quantitative comparison to the simulated cases of Ashgriz & Mashayek
(1995) and Dumouchel et al. (2017) is presented in figures 14 and 15. Only surface
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FIGURE 14. Surface positions rs(u, t) as functions of u in the interval [0, 2π] at different
times prior to breakup for two wavenumbers, two Ohnesorge numbers and η0 = 0.05.
Comparison of our model (solid lines) with the simulations of Ashgriz & Mashayek (1995)
(open circles). (a) k = 0.2, Oh = 0.005, t = 22.398; tc = 18.64, tb = 24.87; (b) k = 0.45,
Oh = 0.005, t = 10.342, 12.481, 12.827; tc = 11.08, tb = 13.15; (c) k = 0.2, Oh = 0.1,
t = 22.415; tc = 19.18, tb = 25.77; (d) k = 0.45, Oh = 0.1, t = 10.924, 13.467, 14.248;
tc = 12.34, tb = 14.30. For all cases, the initial interface shape is represented.

shapes corresponding to times inferior to the breakup time tb(k,Oh) and wavenumbers
inferior to the wavenumber kbc are considered. These quantities are inferred by the
jet model. From the comparison with the data from Ashgriz & Mashayek (1995), it
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FIGURE 15. Surface positions rs(u, t) as functions of u in the interval [0, 2π] for k= 0.55,
Oh= 0.0065, η0 = 0.05 and at the three time instants 0, 8.0, 10.0 and 11.0. Comparison
of our model (solid lines) with the simulation of Dumouchel et al. (2017) (open circles)
at the three time instants 0, 8.0, 10.0 and 11.0. The breakup occurs in the simulation at
time t= 11.19< tc = 11.24< tb = 11.70. The initial surface position is shown as well.

can be seen that the jet model represents reasonably well the simulated jet at early
times (t < tc) (see figure 14b) at time t = 10.342 < tc = 11.08 and figure 14d) at
time t = 10.924 < tc = 12.34). For greater times, the surface shapes start to deviate
significantly from the simulations, even if the secondary deformation of the simulated
jet is well predicted by the model (see figure 14a) and figure 14b) for instance).
The deviation seems to be more pronounced for the larger wavenumber case. The
comparison to the simulated data of Dumouchel et al. (2017) in figure 15 confirms
the previous observations. The agreement is excellent for time t= 8< tc = 11.24. For
larger times the model fails to predict the ligament formation between the primary
deformation peaks. For this case, the breakup is observed earlier in the simulation
than it is predicted by the model. To improve the capacity of the model to represent
the jet deformation and satellite drops formation, a third-order approximation of the
jet surface needs to be conducted.

6. Conclusions
A weakly nonlinear stability analysis of a Newtonian liquid jet in a vacuum was

performed. The work complements the corresponding inviscid analysis by Yuen (1968)
by including the viscous stresses in the liquid, and the corresponding recent analysis
of a planar viscous liquid sheet by Yang et al. (2013) by considering the cylindrical
geometry. In the weakly nonlinear analysis, velocity, pressure and jet surface shape are
expanded in series with respect to a small deformation amplitude parameter, yielding a
set of equations with different powers of the parameter. The dimensionless equations
depend on three parameters: the initial perturbation amplitude, the perturbation
wavenumber and the liquid Ohnesorge number. Our analysis is restricted to second
order which we show to be sufficient to study satellite drop formation in liquid jet
breakup. The first-order solution is the linear one known from the literature (Rayleigh
1878; Weber 1931). The second-order solution represents the nonlinear influence from
the first-order one. To the best of our knowledge this is the first weakly nonlinear
analysis of a Newtonian liquid jet. One possible reason for this may be the difficulty
in solving analytically a Poisson equation for the second-order pressure field in the
development of the solution. In the present work, it was suggested to approximate the
right-hand terms of this non-homogeneous equation, containing products of Bessel
functions with different arguments and vanishing for zero Ohnesorge number, by
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a polynomial function. The influence of the approximation was tested, and results
showed that this viscous contribution could be neglected in the final second-order
solution. This simplification allows us to obtain a simple viscous model which
takes into account the first nonlinear effects and the viscous ones. At vanishing
Ohnesorge number of the jet, our solutions reproduce Yuen’s inviscid results (Yuen
1968). Varying the jet Ohnesorge number between 10−5 and 0.1 shows a varying
influence on the formation of satellite drops in liquid jet breakup, in agreement with
direct numerical simulations and forced liquid jet experiments. In particular, satellite
drop formation is delayed with increasing Ohnesorge number and wavenumber, as
expected by the damping and size effects of viscosity. However, the agreement is
shown to be restricted to wavenumbers lower than a threshold wavenumber defined
by considering the conditions for observing a secondary deformation peak between
the primary deformation ones on the jet surface, that may lead to a satellite drop, and
for satisfying volume conservation up to a certain deviation. The volume conservation
criterion is imposed to ensure that the conclusions inferred by the model are safe.
Future work will explore in more detail the capacity of analytical approaches to
predict nonlinear liquid jet breakup, in comparison with numerical simulations and
experiments. The analysis will be carried further to include the influence from a
gaseous ambient medium and viscoelastic liquid behaviour.
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